Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana

نویسندگان

  • Hirokazu Fukuda
  • Haruhiko Murase
  • Isao T. Tokuda
چکیده

Plant circadian systems are composed of a large number of self-sustained cellular circadian oscillators. Although the light-dark signal in the natural environment is known to be the most powerful Zeitgeber for the entrainment of cellular oscillators, its effect is too strong to control the plant rhythm into various forms of synchrony. Here, we show that the application of pulse perturbations, i.e., short-term injections of darkness under constant light, provides a novel technique for controlling the synchronized behavior of plant rhythm in Arabidopsis thaliana. By destroying the synchronized cellular activities, circadian singularity was experimentally induced. The present technique is based upon the theory of phase oscillators, which does not require prior knowledge of the detailed dynamics of the plant system but only knowledge of its phase and amplitude responses to the pulse perturbation. Our approach can be applied to diverse problems of controlling biological rhythms in living systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.

Daylength, or photoperiod, is perceived as a seasonal signal for the control of flowering of many plants. The measurement of daylength is thought to be mediated through the interaction of phototransduction pathways with a circadian rhythm, so that flowering is induced (in long-day plants) or repressed (in short-day plants) when light coincides with a sensitive phase of the circadian cycle. To t...

متن کامل

TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock.

The plant circadian clock is required for daily anticipation of the diurnal environment. Mutation in Arabidopsis thaliana TIME FOR COFFEE (TIC) affects free-running circadian rhythms. To investigate how TIC functions within the circadian system, we introduced markers for the evening and morning phases of the clock into tic and measured evident rhythms. The phases of evening clock genes in tic w...

متن کامل

Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis.

The transcription of CAB genes, encoding the chlorophyll a/b-binding proteins, is rapidly induced in dark-grown Arabidopsis seedlings following a light pulse. The transient induction is followed by several cycles of a circadian rhythm. Seedlings transferred to continuous light are known to exhibit a robust circadian rhythm of CAB expression. The precise waveform of CAB expression in light-dark ...

متن کامل

Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis.

Plants have circadian oscillations in the concentration of cytosolic free calcium ([Ca(2+)](cyt)). To dissect the circadian Ca(2+)-signaling network, we monitored circadian [Ca(2+)](cyt) oscillations under various light/dark conditions (including different spectra) in Arabidopsis thaliana wild type and photoreceptor and circadian clock mutants. Both red and blue light regulate circadian oscilla...

متن کامل

A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock.

Light is the most important factor controlling circadian systems in response to day-night cycles. In order to better understand the regulation of circadian rhythms by light in Synechococcus elongatus PCC 7942, we screened for mutants with defective phase shifting in response to dark pulses. Using a 5-h dark-pulse protocol, we identified a mutation in kaiC that we termed pr1, for phase response ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013